
Summary of related papers on graph construction

Reported by Yidan Liu

2022_ACL_DARER_Dual-task Temporal Relational Recurrent Reasoning Network for Joint Dialog Sentiment Classification and Act Recognition

r_{ij}	1	2	3	4	5	6	7	8
$I_s(i)$ $I_s(j)$ $pos(i,j)$	1	1	1	1	2	2	2	2
$I_s(j)$	1	1	2	2	1	1	2	2
pos(i,j)	>	\leq	>	\leq	>	\leq	>	\leq

Table 2: All relation types in SATG (assume there are two speakers). $I_s(i)$ indicates the speaker node i is from. pos(i, j) indicates the relative position of node i and j.

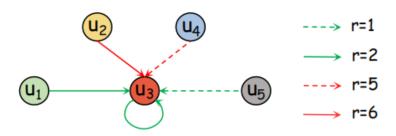


Figure 2: An example of SATG. u_1 , u_3 and u_5 are from speaker 1 while u_2 and u_4 are from speaker 2. w.l.o.g, only the edges directed into u_3 node are illustrated.

r_{ij}'	1	2	3	4	5	6	7	8	9	10	11	12
$I_t(i) \\ I_t(j) \\ pos(i,j)$	S	S	S	S	S	S	A	A	A	A	A	A
$I_t(j)$	S	S	S	A	A	A	S	S	S	A	A	A
pos(i,j)	<	=	>	<	=	>	<	=	>	<	=	>

Table 3: All relation types in DRTG. $I_t(i)$ indicates that node i is a sentiment (S) node or act (A) node.

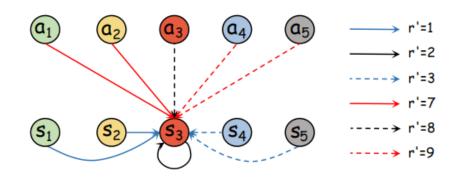


Figure 3: An example of DRTG. s_i and a_i respectively denote the node of DAC task and DAR task. w.l.o.g, only the edges directed into s_3 are illustrated.

2022_ACL_Multi Granularity Semantic Aware Graph Model for Reducing PositionBias in Emotion-Cause Pair Extraction

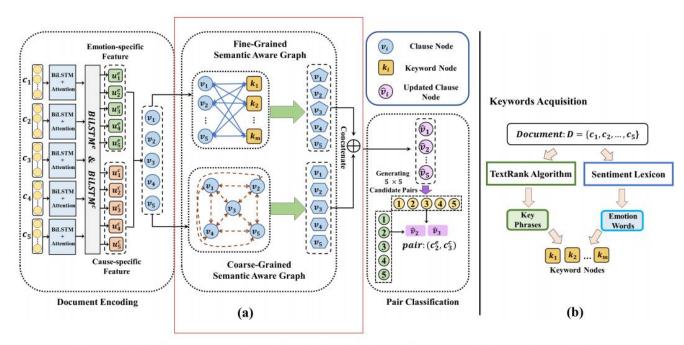


Figure 2: (a) shows an overview of MGSAG. (b) shows the process of keywords acquisition.

$$\alpha_{ij} = \frac{\exp(w^{\top}[\mathbf{W}_1\mathbf{v}_i; \mathbf{W}_2\mathbf{k}_j])}{\sum_{t=1}^{|D|} \exp(w^{\top}[\mathbf{W}_1\mathbf{v}_t; \mathbf{W}_2\mathbf{k}_j])}, \quad (4)$$

where \mathbf{v}_i and \mathbf{k}_j are features of clause c_i and keyword k_j respectively; $[\cdot;\cdot]$ is the concatenation operation; $\mathbf{W}_1, \mathbf{W}_2 \in \mathbb{R}^{d_w \times d_w}$ and $w \in \mathbb{R}^{2d_w \times 1}$ are trainable parameters.

Then, clause c_i is encoded as the fine-grained semantic enhanced representation \mathbf{v}_i^b as follows:

$$\mathbf{v}_{i}^{b} = \mathbf{tanh}((\mathbf{v}_{i} + \sum_{j=1}^{m} (\alpha_{ij}(\sum_{t=1}^{|D|} \alpha_{tj}\mathbf{W}_{3}\mathbf{v}_{t}))) + \mathbf{b}),$$
(5)